Alex Friedman

Fusion Energy Program, LLNL
and
Heavy lon Fusion Science Virtual National Laboratory

lon Beam Driven High Energy Density Physics Workshop,
Pleasanton, CA, June 22-24, 2010

The Heavy lon Fusion Science ,,m,, H| %‘
Virtual National Laboratory EEEEEEEEEEE ::'J:if:‘::.‘.’..‘::::::u

* This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344, by LBNL under Contract DE-AC02-05CH11231, and by PPPL under Contract DE-AC02-76 CH03073.




Outline

[ * Introduction to the project }

« 1-D ASP code model and physics design

 Warp (R,Z) simulations

» 3-D effects: misalignments & corkscrew

* Opportunities for beam dynamics studies

IN[ID[]C X . .
(e T Slide 2 The Heavy lon Fusion Science /2.2 I!%‘ —:e};‘ippl'l.
Qi N Virtual National Laboratory 7




NDCX-II will enable studies of
warm dense matter, and of key
physics for ion direct drive
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NDCX-Il is underway at LBNL!

N Dl Icl (X « DOE’s Office of Fusion Energy
Sciences approved the NDCX-II
project earlier this year.

*$11 M of funding was provided via the (2D
American Recovery and Reinvestment Act
(“stimulus package”).

 Construction of the initial configuration
with 15 +/- 3 cells began in July 2009,
with completion planned for March 2012.
« Commissioning is to be in two
6-month phases.
* We hope to start target experiments in
~ QOctober 2012, as we prepare for the
second phase commissioning.
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LLNL has given us 50 induction cells from the ATA electron accelerator

 Ferrite cores offer 1.4 x 10-3 Volt-seconds

» Blumlein voltage sources offer 200-250 kV with FWHM duration of 70 ns

* Longer beam at front end needs custom voltage sources < 100 kV

e lon beam requires stronger (3T) pulsed solenoids and other cell modifications

Advanced Test Accelerator (ATA)

Test stand | ’
at LBNL |
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The “drift compression” process is used to shorten an ion bunch

« The process is analogous to “chirped pulse amplification” in lasers
* Induction cells impart a head-to-tail velocity gradient (“tilt”) to the beam

« The beam shortens as it moves down the beam line
(pictures in beam frame):

9 VZ 9 VZ
Z Z
=
< <
Initial beam, compressed beam

with velocity tilt

» Space charge, if present, limits this compression
* To obtain a short pulse on target we introduce neutralizing plasma
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NDCX-I at LBNL routinely achieves current and power
amplifications exceeding 50x

beam induction drift final
injector  transport bunching compression focus "
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NDCX-Il beam neutralization is based on NDCX-I experience
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We employ the drift compression concept twice in NDCX-II

« Initial (non-neutralized) pre-bunching, to shorten the pulse duration for:
better use of induction-core Volt-seconds

— early use of ATA Blumlein power supplies (~70 ns limit)

. apply apply neutral—

 Final “neutralized drift compression” onto the target
— Electrons in plasma move to cancel the beam’s electric field
— Require ng,qma > Npearm fOr this to work well
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NDCX-II principal systems

_a custom long- water-filled ATA
. « 1 | pulse voltage Blumlein oil-filled ATA
Li*ion sources voltage sources transmission lines
Injector

final focus solenoid
and target chamber
(existing)

ATA induction
cells with pulsed

2.5 T solenoids _ S
neutralized drift

compression line v
with plasma sources ‘
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The baseline employs 12 active induction cells; we will apply
any unused contingency funds to expand the scope

NDCX-| NDCX-II construction project NDCX-I|
(bunched 12-cell 15-cell 18-cell 21-cell
beam) (baseline) | (“probable”) | (“possible”) | (enhanced)
lon species K* (A=39) Li* (A=7) Li* (A=7) Li* (A=7) Li* (A=7)
Total charge 15 nC 50 nC 50 nC 50 nC 50 nC
lon kinetic energy 0.3 MeV 1.2 MeV 1.7 MeV 2.4 MeV 3.1 MeV
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1-D simulation code ASP (“Acceleration Schedule Program?)

 Follows (z,v,) phase space using a few hundred particles (“slices”)

— 1 - 1 1 Ty '1 T
7 ” 0.8 I : 7]
Snapshots” of current ! i ' Jo.20
and kinetic energy i ' '
profiles vs. z, _oer Ho.15
. <
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z (m)
« Centroid tracking for studying imperfect alignment

« Optimization loops for waveforms & timings, dipole strengths (steering)
* Interactive (Python language with Fortran for intensive parts)
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Pulse length vs. z, as developed using 1-D ASP simulation
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Pulse duration vs. z: the entire beam transit time is key

18-cell
configuration
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Voltage waveforms for all gaps
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Injector design was developed using Warp in (r,z) geometry

R (cm) 10

0

First, used steady-flow “gun”
mode to design for a nearly
laminar flow:

Second, carried out fully

time dependent simulation:

emitter extractor accel
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Snapshots from a Warp (r,z) simulation (18-cell version)
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Ensembles of Warp (r,z) runs clarify effects of pulser timing jitter

Relative to ASP timings Relative to prev. best case

Relative to prev. best case
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» Random shifts within the assumed jitter were imposed on gap firing times;

nominal NDCX-II spark-gap jitter is 2 ns

» Figure-of-merit is a rough estimate of max pressure (Mbar) in an Aluminum target

« Some perturbed cases worked better; we chose the best as the “new nominal”

(these results are for a configuration with 15 active ATA cells and an 8-T final focus solenoid)
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Video: Warp 3-D simulation of well-aligned 18-cell NDCX-II




Video: Warp 3D simulation of 18-cell NDCX-II, including random
offsets of solenoid ends by up to 2 mm (0.5 mm is nominal)




Warp 3D simulations indicate slow degradation of the focus as
misalignment of the solenoids increases (without steering)

« Random offsets in x and y were imparted to the solenoid ends.
« The offsets were chosen from a uniform distribution with a set maximum.
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To assess steering, we again used the fast ASP code; a tuning
algorithm (as in ETA-Il, DARHT)* adjusts dipole strengths

Trajectories of head, mid, tail particles, and corkscrew amplitude, for a 34-cell ASP run.
Random offsets of solenoid ends up to 1 mm were assumed; the effect is linear.
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NDCX-II will be an exciting platform for beam physics studies
(many of them relevant to an HIF driver)

 NDCX-Il operation embodies collective beam dynamics:
— Driver-like compression of non-neutral and neutralized beams
— Space charge-driven removal of velocity tilt, to achieve “stagnation”
— Longitudinal waves are evident
* Non-ideal effects include:
— Emittance growth (phase-space dilution), “halo” formation
— Beam - plasma interactions and instabilities
— Aberrations in final focus
« Add-on hardware could enable studies of:
— Collective focusing of ion beams
— Intense beam transport in quadrupoles
— Beam dynamics in bends
» Beam diagnostics will be developed and improved
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NDCX-II will enable greater understanding of beams in plasmas

Electromagnetic fields are excited by a
moving beam in a magnetized plasma:

s

Wave field (can extend far
outside the bunch)
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Can be used for diagnostics

M. Dorf, . Kaganovich, E. Startsev, and R. C.
Davidson, Phys. Plasmas 17, 023103 (2010).

(This material -- thanks: M. Dorf)
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M. D
R. C. Davidson, PRL 103, 075003 (2009)

Review paper: |. D. Kaganovich, et al.,
Phys. Plasmas 17, 056703 (2010)
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The “Robertson lens” offers collective focusing in a

quasi-neutral system

« An ambipolar electrostatic field brings both species to a common focus
« For a given focal length, the required B, is smaller by a factor of (m_/m;)'?

. (a) SOLENOIDAL COIL
magnetic lens |
neutralized ion beam v 0 0oooboDbaod yiz / ®
- —s ————
T g5
A > By P &
/_\. : focal point
Neutralizing electrons come from outside the 0O 0O0DO0OOO OO O $
magnetic field; no plasma inside the solenoid
(from Kraft paper)
_ T
Focusing force on beam: F,. = ——m;Q8; (2 = ZpeBy/m;c)

4

References: S. Robertson, Phys. Rev. Lett. 48, 149 (1982).

requires:

R. Kraft, B. Kusse, & J. Moschella, Phys. Fluids 30, 245 (1987). << o/w
pe

wpe>> Wee
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Beam self-focusing force is greatly enhanced, relative to
magnetic self-pinching, by a weak solenoid B field (~100 G)

The enhanced focusing is provided by a strong radial
electric field that arises due to a local polarization of the
magnetized plasma background by the moving ion beam.

lasma
P _o
N
o
—>

B,
Provided the beam current is
neutralized, i.e., Z,n,v, = n_v,,:

1d
F, = Zimevi — b

Ne dr
Relative focusing strengths:
NDCX'I Fr Ldrlft/ FSO| LSO| ~ 004
NDCX'” Fr Ldrlft/ FSO| LSO| ~ 05

M. Dorf, et al., PRL 103, 075003 (2009)

Radial focusing force

Beam density profile
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Things we need to measure, and the diagnostics we'll use

Non-intercepting (in multiple locations):

» Accelerating voltages: voltage dividers on cells

« Beam transverse position: four-quadrant electrostatic capacitive probes
« Beam line charge density: capacitive probes

« Beam mean kinetic energy: time-of-flight to capacitive probes

Intercepting (in two special “inter-cell” sections):

« Beam current: Faraday cup

Beam emittance: two-slit or slit-scintillator scanner

Beam profile: scintillator-based optical imaging

Beam kinetic energy profile: time-of-flight to Faraday cup
Beam energy distribution: electrostatic energy analyzer

(Underlined items will be available at commissioning)
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NDCX-II potential performance for “well tuned” configurations

NDCX-| NDCX-II construction project NDCX-I|
(bunched 12-cell 15-cell 18-cell 21-cell
beam) (baseline) | (“probable”) | (“possible”) | (enhanced)
lon species K* (A=39) Li* (A=7) Li* (A=7) Li* (A=7) Li* (A=7)
Total charge 15 nC 50 nC 50 nC 50 nC 50 nC
lon kinetic energy 0.3 MeV 1.2 MeV 1.7 MeV 2.4 MeV 3.1 MeV
Focal radius
(50% of beam) 2 mm 0.6 mm 0.6 mm 0.6 mm 0.7 mm
Duration (bi-parabolic
measure = \2 FWHM) 2.8 ns 0.9 ns 0.4 ns 0.3 ns 0.4 ns
Peak current 3A 36 A 73 A 93 A 86 A
Peak fluence 0.03Jicm2 | 13Jicm2 | 19Jiem2 | 14d/cm? | 22 Jicm?
(time integrated)
Fluence w/in 0.1 mm 8 Jlem? 1 Jfem? | 10Jdem2 | 17 Jiem?
diameter, w/in duration
Max. central pressure 0.07 Mbar | 0.18 Mbar | 0.17 Mbar | 0.23 Mbar
in Al target
Max. central pressure 0.18 Mbar | 0.48 Mbar | 0.48 Mbar | 0.64 Mbar

in Au target

Caveats: these are from (r,z) Warp runs (no misalignments), and assume uniform 1 mA/cm? emission, front-
end pulses that match the design, and perfect neutralization; they use only measured Blumlein waveforms




W

1o

-
Ly

=1
-
~

NG

v,
I

\
N
-

»
“

"




We look forward to a novel and flexible research platform

« NDCX-II will be a unique ion-driven user facility for warm
dense matter and IFE target physics studies.

« The machine will enable a multiplicity of beam dynamics
experiments, of both inherent interest and relevance to
high-current fusion drivers.
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